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Abstract. We examine the application of quantum algorithms to the non-Abelian hidden subgroup
problem and focus on the dihedral hidden subgroup problem (DHSP). Ettinger and Høyer have
recently discovered an algorithm which, although efficient in the number of operations of the
quantum computation, requires classical post-processing which grows exponentially with the size
of the input. We first show that the DHSP can be reduced to another problem: how to efficiently
estimate an unknown shift k, in a one-to-one map f : ZM → ZM , given two oracles which provide
x → f (x), and x → f (x ⊕ k), with k and f unknown. We devise an algorithm which uses
amplitude amplification to obtain an estimate for the unknown shift k in a number O(

√
M) oracle

calls.

1. Introduction

All of the known quantum algorithms which run exponentially faster than their most efficient
probabilistic classical counterparts can be reformulated as algorithms which solve particular
cases of the hidden subgroup problem (HSP for short), or unknown subgroup problem [1–3].
Essentially, this problem amounts to finding the generators of an unknown subgroup K of a
group G, given a function f : G → R, which is constant and distinct on the cosets of K
in G, and where R is a finite set. Almost all quantum algorithms which are exponentially
faster than the most efficient classical probabilistic algorithm are examples of an Abelian
hidden subgroup problem where the group G (and thus K) are Abelian. In particular, Shor’s
factorization problem corresponds to finding the generators of the unknown additive subgroup
K = rZ, of integer multiples of r , where r is the order of of an element a from the group of
integers modulo N , and G = Z. Here the function f maps x → ax modN . In fact, one can
map Deutsch’s problem, Simon’s problem, the discrete logarithm problem and the Abelian
stabilizer problem onto Abelian hidden subgroup problems (see [4] and [6] for details). It is
now known how to efficiently solve any Abelian HSP using a quantum algorithm. The next
generalization, using quantum algorithms to efficiently solve a non-Abelian HSP, remains,
except for one particular case [5], an open problem. The motivations to expand the known
techniques to non-Abelian situations are high as it is known that the difficult problem of graph
isomorphism is equivalent to the non-Abelian HSP for symmetric groups.

In this paper we concentrate on the dihedral hidden subgroup problem (DHSP), where
G = DN , and where DN is the N th dihedral group or the symmetry group of the N -sided
polygon. The hidden subgroup problem for DN has been considered by Ettinger and Høyer
in [1]. They found a quantum algorithm which, given a function f : G → R, and which
satisfies the dihedral hidden subgroup promise with respect to some subgroup K, there exists
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a quantum algorithm which uses O(logN) evaluations of f , and outputs a subset X ⊆ DN

such that X is a generating set for K with probability at least 1 − 2/N . The dihedral subgroup
promise is the statement that f is distinct and constant on the left cosets of K in G. Although
this appears, at first, to solve the DHSP, the authors point out that to extract a good estimate
for the generating set X, from the output of the quantum algorithm, requires an exponential
amount of classical post-processing and thus the combined quantum and classical processing
is exponential in logN .

In the following we show that the DHSP can be recast into another, more tractable, problem
which we will call the hidden shift problem. For the simplest case, we show that this problem
is, in fact, Deutsch’s problem, and thus possesses a quantum algorithmic solution. We then
explore various approaches one could take towards finding a more general solution to the
quantum hidden shift problem. We find that the technique of amplitude amplification [6],
points the way to a solution and we give the details of the quantum algorithm which solves the
hidden shift problem and thus the DHSP.

2. Dihedral HSP and the hidden shift problem

We begin by reducing the DHSP to the hidden shift problem. We first note, along with [1],
that the groupDN is isomorphic to the group ZN �φ Z2, where the multiplication is defined by
(a1, b1)(a2, b2) = (a1 +φ(b1)(a2), b1 +b2), and where the homomorphism φ : Z2 → Aut(ZN)

is defined by 1 → φ(1)(a) = −a. We take a group element in DN to be represented by the
double (a, b), in ZN �φ Z2. It was shown in [1], through an analysis of the group structure
of DN , that the set X of generators for the hidden subgroup K can be made up of two parts.
The first part, X1, which generates the portion of the hidden subgroup when the map f is
restricted to the Abelian subgroup of DN , can be found using standard quantum algorithmic
techniques for solving the Abelian HSP. In [1] they then consider the restriction fM of f to
DM = DN/〈X1〉 → R. This restricted map is also subject to a hidden subgroup problem
with the hidden subgroup being either K2 = {(0, 0)} or K2 = {(0, 0), (k0, 1)}, with the final
complete generating set being X = X1 or X = X1 ∪ {(k0, 1)}, respectively. The trivial case
where K2 = {(0, 0)}, can be dealt with separately and solved. For the non-trivial case, the task
of determining the generating set for the hidden subgroup is thus reduced to finding the value
of k0. In the appendix we show that this task is identical to the following problem: one is
given two one-to-one and unknown functions (or oracles), f0 and f1, which map ZM → ZM ,
but which satisfy the promise, f1(a) = f0(a + k0), a ∈ ZM , where k0 is again unknown (see
the appendix). In [1] the quantum oracle representing the map f : DN → R, for the DHSP is
given by

Ûf : |A, b, c〉 → |A, b, f (A, b)⊕ c〉 (1)

where a ∈ ZN and b ∈ Z2, while the oracle fM which acts on DM can be viewed in terms of
the states

|a, b, c〉 = 1√|〈X1〉|
∑
x∈〈X1〉

|a ⊕ x, b, c〉 (2)

where now we can consider a ∈ ZM , M = min{1 � j � N | (j, 0) ∈ 〈X1〉}, and where
the addition in the right-hand side of (2) is taken modulo N . The ‘reduced’ quantum oracle
representing the map fM : DM → R can be written as

ÛDHSP : |a, b, c〉 → |a, b, fM(a, b)⊕ c〉 ≡ |a, b, fb(a)⊕ c〉. (3)

The task now is to estimate k0.
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3. Strategies towards a quantum algorithm

We begin by noting that the hidden shift problem, in the case M = 2, is in fact Deutsch’s
problem and thus possesses a quantum algorithmic solution. For M > 2, however, since the
details of the function f0 and f1 are unknown, one might wish to encode into the algorithm the
means of identifying and coping with all of the possible one-to-one maps f0 : ZM → ZM . This
can be done for M = 2. However, as the number of such maps goes as M factorial, while the
dimension of the associated Hilbert space goes asM , this cannot possibly succeed forM > 2.
A strategy similar to the one taken in [1] would be to make use of the fact that a function
whose argument suffers a constant shift when transformed by the Fourier transform picks up
a phase which is proportional to this shift, relative to the Fourier transform of the unshifted
function. One can design a quantum algorithm along this reasoning using the quantum Fourier
transform. However, as in [1], although the quantum algorithm requires polynomial steps,
one must estimate k0 from a non-uniform probability distribution, and this again requires an
exponential amount of classical post-processing.

From the results of the previous section, we have available to us two oracles, a → f0(a),
the unshifted function, and a → f1(a) = f0(a + k0), the shifted function, with which to
construct our quantum algorithm. It is not hard to show that if one were given, in addition
to these two oracles, the oracles a → fi(a) = f0(a + 2ik0), i = 1, 2, . . . , (logM) − 1, then
one could use quantum Fourier transform techniques to efficiently estimate k0. However, the
underlying problem, the DHSP, only yields to us the two oracles f0 and f1 (see the appendix).
Thus, to solve the DHSP we must restrict ourselves to work with f0 and f1.

There are two possible classes of quantum algorithms which might be applied to solve this
problem, namely algorithms based on Shor’s factorization method or Grover’s search method.
The former will yield an exponential increase in speed, while the latter will yield a square-root
increase in speed. We have so far been unsuccessful in discovering an exponentially efficient
algorithm for solving the hidden shift problem. However, below we give an algorithm which
uses amplitude amplification to obtain an estimate of the unknown shift k0 in O(

√
M) oracle

calls. Such a procedure will entail more quantum oracle calls than the procedure advanced
in [1]. Although calls to a quantum oracle may be costly to implement physically, the entire
algorithm (which includes the quantum and classical post-processing) presented here will scale
more efficiently than in [1].

3.1. Grover’s search or amplitude amplification

The Grover operator Q̂ is given by [7]

Q̂ = −Ĥ Î0Ĥ Îx0 (4)

where Ĥ is the M-dimensional Hadamard operator and Î0 and Îx0 are inversion operators that
we will define below. The Grover operator acts within an M-dimensional space. However,
the algorithm described below will require the use of several ‘scratch’ registers to effect the
operator Îx0 . These scratch registers are initialized to zero and are returned to zero unitarily
during the implementation of Îx0 . The starting state of the algorithm is the uniform state
|ψi〉 = Ĥ |0〉, where |0〉 is the zero state of an M-qubit register, a register which we shall
denote as the index register. The operator Î0 reflects any state in this register through the zero
state, i.e.

Î0 = Îh − 2|0〉I I 〈0| (5)
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where we have inserted a subscript I to indicate that we are working in the Hilbert space of
the index register. The operator Îx0 will be built to effect the following transformation:

Îx0 |h〉I =
{

+|h〉I h �= k0

−|h〉I h = k0
(6)

or

Îx0 = ÎI − 2|k0〉I I 〈k0| (7)

where k0 is the unknown shift in the shifted oracle f1(a) = f0(a + k0).
Once equipped with Q̂ we iterate Q̂n|ψi〉I , approximately n = √

M times. From [6],
since there is only one ‘marked card’ in the index list, when h = k0, we obtain

|k0〉I ≈ Q̂
√
M |ψi〉I . (8)

One can thus determine the value of k0 with near unit probability by measuring the final state
of the index register.

3.2. Constructing Îx0

To effect the transformation (6), we use extra ‘scratch’ quantum registers. We introduce five
extra scratch registers, which are all (except one)M-qubit registers initialized to the zero state.
We label these registers as the x-register |0〉x , the oracle register |0〉γ , the unshifted register,
|0〉0, the shifted register |0〉1, and the difference register, |0〉�. The oracle register is a single-
qubit register. The following steps will make use of the oracle (3), a single-qubit NOT gate,
ÛNOT, and standard addition and subtraction gates, Û± : |a, b〉 → |a, b ± a〉. The registers
acted upon by these gates will be denoted as superscripts, i.e. the addition of the index register
to the difference register will be given by Ûh�

+ .

Step 1. The initial state of the index and scratch registers is thus taken to be

|�i〉 = 1√
M

M−1∑
h=0

|h〉I ⊗ |0〉x ⊗ |0〉γ ⊗ |0〉0 ⊗ |0〉1 ⊗ |0〉� (9)

or

|�i〉 = 1√
M

M−1∑
h=0

|h, 0, 0, 0, 0, 0〉 (10)

where it is understood that the order of the registers is index, x, oracle, unshifted, shifted and
difference.

Step 2. We next apply an M-dimensional Hadamard operator in the x-register space, Ĥ x , to
obtain

|�2〉 = 1

M

M−1∑
h=0

M−1∑
x=0

|h, x, 0, 0, 0, 0〉. (11)

Step 3. We next apply a bit flip, Û γ

NOT, targeting the oracle register and then apply the
oracle (3), targeting a from the x register, b from the oracle register and c from the shifted
register, Û xγ 1

DHSP. After this we again apply the bit flip to the oracle register to obtain

|�3〉 = 1

M

M−1∑
h=0

M−1∑
x=0

|h, x, 0, 0, f0(x ⊕ k0), 0〉. (12)
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Step 4. We next add the index register to the x-register by applying Ûhx
+ , to obtain

|�4〉 = 1

M

M−1∑
h=0

M−1∑
x=0

|h, x ⊕ h, 0, f0(x ⊕ k0), 0〉. (13)

Step 5. We then apply the oracle (3) again, this time targeting c from the unshifted register
by applying Û xγ 0

DHSP, to obtain

|�5〉 = 1

M

M−1∑
h=0

M−1∑
x=0

|h, x ⊕ h, 0, f0(x ⊕ h), f0(x ⊕ k0), 0〉. (14)

Step 6. We now undo the addition by applying Ûhx †
+ , to obtain

|�6〉 = 1

M

M−1∑
h=0

M−1∑
x=0

|h, x, 0, f0(x ⊕ h), f0(x ⊕ k0), 0〉. (15)

Step 7. We now add the unshifted register to the difference register by applying Û 0�
+ , and

then subtract the shifted register from the difference register by applying Û 1�
− , to finally obtain

|�7〉 = 1

M

M−1∑
h=0

M−1∑
x=0

|h, x, 0, f0(x ⊕ h), f0(x ⊕ k0), f0(x ⊕ h)− f0(x ⊕ k0)〉. (16)

Since the function f0 : ZM → ZM is one to one, the difference register will possess the zero
value iff h = k0. In fact, in the M × M , superposition (16), all the M terms in the x sum
which have h = k0 in their index register will have a zero entry in their difference register.
The evolution described from steps 2 to 9 can be given as

ÛP ≡ Û 1�
− Û 0�

+ Ûhx †
+ Û

xγ 0
DHSP Û

hx
+ Û

γ

NOT Û
xγ 1
DHSP Û

γ

NOT Ĥ
x. (17)

Step 8. To complete the process we now apply the operator Î �0 , where

Î �0 ≡ II ⊗ Ix ⊗ Iγ ⊗ I0 ⊗ I1 ⊗ (I� − 2|0〉��〈0|). (18)

This effects

Î �0 |h, x, 0, f0(x ⊕ h), f0(x ⊕ k0), f0(x ⊕ h)−f0(x ⊕ k0)〉 (19)

=
{

+|h, x, 0, f0(x ⊕ h), f0(x ⊕ k0), f0(x ⊕ h)− f0(x ⊕ k0)〉 h �= k0

−|h, x, 0, f0(x ⊕ h), f0(x ⊕ k0), 0〉 h = k0.
(20)

Step 9. We now return the scratch registers to their initial state by applying Û †
P . After this,

we finally return to the state

|�f 〉 = Û
†
P Î

�
0 ÛP |�i〉 (21)

= 1√
M

( M−1∑
h=0,h �=k0

|h, 0, 0, 0, 0, 0〉 − |k0, 0, 0, 0, 0, 0〉
)

(22)

= 1√
M

( M−1∑
h=0,h �=k0

|h〉I − |k0〉I
)
. (23)
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Thus, the operator, Îx0 , can be broken down into Û
†
P Î

�
0 ÛP . Since there is only one

‘marked card’, to amplitude-amplify the initial state |�i〉I to the final state |k0〉I requires
O(

√
M) calls of the Grover iterate Q̂. This would result in O(4

√
M) oracle calls (one Grover

step requires an oracle call for each of the steps 3 and 5 and two further calls to the oracles to
undo these in step 9). However, this can be reduced to O(2

√
M) calls by working in a larger

Hilbert space and setting the initial state |�i〉 = |�3〉. We then set Îx0 = Û
′ †
P Î�0 Û ′

P , where
Û ′
P = Û 1�

− Û 0�
+ Û

hx †
+ Û

xγ 0
DHSP Û

hx
+ .

4. Conclusion

In this paper we have shown that the non-Abelian DHSP can be reduced to the hidden
shift problem. Through the method of amplitude amplification we were able to devise an
algorithm which produced a good estimate for the hidden shift and thus a solution for the
DHSP. Although [1] found a quantum algorithm which only called the oracles ∼O(logM)

times (smaller than required here), the resulting classical information required an exponential
amount of classical post-processing to arrive at an estimate for k0. The algorithm outlined in
this paper requires O(

√
M) oracle calls. The discovery of a quantum algorithm which could

estimate the hidden shift in O(logM) oracle calls with a polynomial classical overhead would
be quite significant. Perhaps, the insight afforded by the ‘interference interpretation’ [2] of
quantum algorithms might help towards such a discovery.
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Appendix

We now outline how the problem of determining the value of k0 in the DHSP is related to
the hidden shift problem. In [1], the hidden subgroup K2 of DM is either trivial, {(0, 0)}, or
is {(0, 0), (k0, 1)}. The trivial case can be dealt with separately. For the non-trivial case, the
hidden subgroup which returns all of the problem states that the restriction of the map f on
the left cosets of K2 in DM is constant and distinct. The order of DM is 2M; however, there
are only M left cosets. These M cosets, Ci , i ∈ [1, . . . ,M], can be labelled by the first index
a,

Ca = {(a, 0), (a + k0, 1)}. (A1)

The function f , which is one to one, is constant and distinct on these cosets and thus
f ((a, 0)) = f ((a + k0, 1)) ≡ fa . We can thus take the restriction of f acting on elements
(a, b), where b = 0, to be a new map (or oracle) f0 : ZM → ZM : a → f0(a) ≡ f ((a, 0)),
while the restriction of f to the elements (a, 1) yields another oracle, f1 : ZM → ZM : a →
f1(a) = f0(a + k0) ≡ f ((a, 1)). In the corresponding HSP, the function f and thus f0 are not
known in detail except that they are both one to one. The task is to determine the shift k0. The
situation can be understood in the following manner: you are given a ∈ ZM and the image of
an unknown one-to-one function f0 : ZM → ZM . You are then given the image of the same
function, except now the domain has been shifted by an unknown amount k0. Your task is to
determine k0. Classically, one could take a particular value of a, say a1, determine f0(a1), and



A hidden shift quantum algorithm 8979

then begin searching through aj , j = 1, . . . ,M , to find a value a2, such that f1(a2) = f0(a1).
Then a2 = a1 + k0. However, this search will take on average 1

2M iterations.
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